Maritime hunter-fishers through 10.000 years at Melkøya, Arctic Norway.

Martin Ramsdell, Tromsø Museum, University of Tromsø

The Melkøya project is an interdisciplinary project based on archaeological excavations at the site of Melkøya, Arctic Norway. The project is financed by the Heritage Fund which is a joint fund for researching and producing handouts on the cultural heritage of the Arctic. The project is led by Anders Hesjedal and funded by the Norwegian Research Council. The project is a collaboration between the University of Tromsø, University of Umeå, University of Tromsø, and Tromsø Museum.

Aims

The majority of Stone Age sites in Norway are defined by the presence of stone artefacts or semi-subterranean houses. Most excavations have focused on the distribution of artefacts or on the house structures themselves. This bias has not only reduced the amount of alternative data but also limited our understanding of past settlements. The Melkøya project will test if it was essential to ask what aspects of life in the Stone Age were neglected by virtue of this archaeological perception.

One way of addressing this would be to investigate larger areas incorporating a variety of approaches in order to identify alternative means of data. The main goal was to map, excavate and identify the function of as many of the prehistoric structures of the island as possible. By giving equal attention to multiple sets of data we hoped to stimulate new and alternative perspectives on the organization and structuring of space at hunter-fisher settlements.

Main strategies and preliminary results

1. Mechanical artefact screening was used in order to explore as much as possible of the distribution of artefacts on top of the settlement areas. The data from all prehistoric periods were inspected. Apart from the excavations in winter when the sun does not rise above the horizon, the summer months of June and July are also optimal coastal biotopes for marine production which attracts fish, marine birds and other marine animals. The changing distribution of fire-cracked stones through time and space might be an important factor in the development of settlement areas. By giving equal attention to areas where no or few finds were recorded or no visible structures were observed, we aimed to generate new sets of data. A number of important finds were made, including a Late Stone Age grave structure discovered directly in a beach some distance away from the nearest site.

2. Systematic excavations in "unpromising" parts of settlement areas. By directing the attention of the excavators in areas where no or few finds were recorded, we hoped to identify new structures and intra-site structure during the Early metal period and Late Stone Age respectively. By directing the attention of the excavators in areas where no or few finds were recorded, we aimed to identify new structures and intra-site structure during the Early metal period and Late Stone Age respectively. By directing the excavators in areas where no or few finds were recorded, we aimed to identify new structures and intra-site structure during the Early metal period and Late Stone Age respectively.

3. Mapping and analysing decorated stones were used in order to understand the context of habitation. As a means of organizing and preparing food, the presence of fire-cracked stones showed an important role. The changing distribution of fire-cracked stones through time and space might be an important factor in the development of settlement areas. By giving equal attention to areas where no or few finds were recorded or no visible structures were observed, we aimed to generate new sets of data. A number of important finds were made, including a Late Stone Age grave structure discovered directly in a beach some distance away from the nearest site.

4. Analysis of phosphate and magnetic susceptibility was used in order to explore as much as possible of the distribution of artefacts on top of the settlement areas. The data from all prehistoric periods were inspected. Apart from the excavations in winter when the sun does not rise above the horizon, the summer months of June and July are also optimal coastal biotopes for marine production which attracts fish, marine birds and other marine animals. The changing distribution of fire-cracked stones through time and space might be an important factor in the development of settlement areas. By giving equal attention to areas where no or few finds were recorded or no visible structures were observed, we aimed to generate new sets of data. A number of important finds were made, including a Late Stone Age grave structure discovered directly in a beach some distance away from the nearest site.

5. Paleobotanical investigations were conducted in order to get a valuable picture of the local vegetation resources that were available through time as well as the human impact on the vegetation. Additional studies were conducted in order to obtain knowledge about plants brought into the dwellings. Local vegetation and a踔arian vegetation is marked from 7,000 years ago to the present. Some areas outside the settlement areas, and anthropogenic effects are also based on samples taken from local dwellings and cultural layers. A total of 28 carbonized dates have enabled detailed palaeobotanical analysis from 8700 BP until present.

6. Extensive use of GIS to establish as many relations between structures, finds and landscape as possible. A micro-topographical map covering all of the island was constructed, which led to new perspectives on the spatial relationships between topography and structures.